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improve signal-to-noise, single-scan methods are also useful to 
increase digital resolution. 
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Certain sponges contain microbial symbionts including blue-
green algae and bacteria2 and possess secondary metabolites, some 
of which may be of microbial origin.3 A Theonella sponge 
collected off Hachijo Island, from which we isolated bioactive 
cyclic peptides,45 also contained orange pigments possessing cy­
totoxic activity. Here we describe the isolation and structure 
elucidation of the pigments named aurantosides A and B, which 
are superficially reminiscent of the streptolydigins.6 

The MeOH extract of the sponge (15 kg) was partitioned 
between water and ether, and the aqueous phase was extracted 
with «-BuOH. The n-BuOH phase was gel-filtered over Sephadex 
LH-20 with MeOH. The cytotoxic orange band was purified by 
reverse-phase chromatography7 to furnish aurantoside A(I, 1.3 
X 10"3% yield based on the wet weight) and aurantoside B (2, 
1.5 X 10~3% yield),8 both as orange amorphous powders. They 
are cytotoxic against P388 and Ll210 leukemia cells (1, IC50 1.8 
and 3.4 jig/mL, respectively; 2, IC50 3.2 and 3.3 jitg/mL). 

The UV-visible spectrum of aurantoside A was pH-sensitive.8 

1 showed intense (M + Na)+ cluster ions with small (M + H)+ 

(1) Bioactive Marine Metabolites. 38. Part 37: Matsunaga, S.; Fusetani, 
N. Tetrahedron Lett. 1991, 32, 5605-5606. 

(2) Trench, R. K. Annu. Rev. Plant Physiol. 1979, 30, 485-531. 
(3) (a) Bergquist, P. R.; Wells, R. J. In Marine Natural Products, 

Chemical and Biological Perspectives; Scheuer, P. J., Ed.; Academic Press: 
New York, 1983; Vol. V., pp 1-50. (b) Hofheinz, W.; Oberhansli, W. E. HeIv. 
Chim. Acta 1977, 60, 660-669. (c) Frincke, J. M.; Faulkner, D. J. J. Am. 
Chem. Soc. 1982,104, 265-269. (d) Matsunaga, S.; Fusetani, N.; Hashimoto, 
K.; Walchili, M. J. Am. Chem. Soc. 1989, 777, 2582-2588. 

(4) Fusetani, N.; Matsunaga, S.; Matsumoto, H.; Takebayashi, Y. J. Am. 
Chem. Soc. 1990, 112, 7053-7054. 

(5) Fusetani, N.; Sugawara, T.; Matsunaga, S.; Hirota, H. J. Am. Chem. 
Soc. 1991, 775,7811-7812. 

(6) (a) Brill, G. M.; McAlpine, J. B.; Whittern, D. J. Antibiot. 1988, 41, 
36-44. (b) Meyers, E.; Cooper, R.; Dean, L.; Johnson, J. H.; Slusarchyk, D. 
S.; Trajo, W. H.; Singh, P. D. J. Antibiot. 1985, 38, 1642-1648 and references 
cited therein. 

(7) The orange solids were first applied to an open column of ODS (70-230 
mesh) and eluted with 30, 50, 70, 90, and 100% MeOH in water. The 90 and 
100% MeOH fractions were combined and subjected to ODS HPLC with 
MeCN-H 2 O (1:1) with 0.1% TFA to afford 1 and 2. 

(8) The name was coined from the Latin word auranticus, which means 
orange. 1: amorphous solid, [a]"D -568° (c = 0.1, MeOH); UV-vis (H2O) 
414 U 46 700), 242 nm (12 100); UV-vis (0.01 N HCl) 456 (e 32 500), 324 
nm (8500); UV-vis (0.01 N NaOH) 412 (<; 52000), 241 nm (11 500); FAB-
MS (positive) m/z 843, 841, 839 (M + Na) + , 821, 819, 817 (M + H) + ; 
FAB-MS (negative) m/z 819, 817, 815 (M - H)"; IR (KBr) 3330, 2920, 1650, 
1600, 1540, 1390, 1240, 1130, 1060, and 1000 cm-'. 2: amorphous solid, 
la]23

D -492° (c = 0.1, MeOH); UV-vis (H2O) 414 (e 49100), 242 nm 
(10900); UV-vis (0.01 N HCl) 456 (t 36 100), 301 nm (9800); UV-vis (0,01 
N NaOH) 412 (e 56200), 242 nm (10900); FAB-MS (positive) m/z 829, 827, 
825 (M + Na)+ , 807, 805, 803 (M + H) + ; FAB-MS (negative) m/z 805, 803, 
801 (M - H)-; IR (KBr) 3320, 2900, 1650, 1610, 1540, 1390, 1230, 1130, 
1070, 1040, and 995 cm"1. 

OBrBz OBrBz 

ion species in the FAB mass spectrum. A molecular formula of 
C36H46Cl2N2O15 was established by the FAB mass and NMR 
spectral data, as well as from combustion analysis. A conjugated 
hexaene (C8-C20) was inferred from the COSY, HMQC, and 
HMBC spectra. Assignments for the olefinic protons and Me-20 
were straightforward: signals were well separated, and long-range 
couplings were observed between Hl6 and H18 and between Hl8 
and Me-20 in the normal COSY spectrum. Two chlorine atoms 
could be placed on Cl 7 and C19 on the basis of their 13C chemical 
shifts (6 129.8 and 137.4). Judging from the 1H-1H coupling 
constants and NOESY data, the double bonds have all-trans 
geometry. 

Two apparent anomeric protons were shown in the 1H and 
COSY spectra. Starting from the higher field signal (S 5.04, d, 
J = 2.8 Hz), we could deduce an arabinopyranose structure (sugar 
II): Hl" and H4" were equatorial, whereas H2" and H3" were 
axial. Another anomeric proton at 5 5.06 (Hl'") was that of 
5-deoxypentofuranose (sugar III), which had a methoxy group 
on C2'" as revealed by the HMBC spectrum. Interpretation of 
the NMR data for this unit was unexceptional. Though Hl' and 
H2' signals of the sugar unit I were both broad and overlapping, 
1H-1H coupling constants and NOESY data allowed us to assign 
the xylopyranose with an axial anomeric proton.9 This was 
supported by the COSY and NOESY spectra in CD3OD at -30 
0C, which gave well-separated and sharper signals for Hl ' and 
H2'. 

The NMR spectra contained signals for a CHCH2 unit (C4, 
C5) with a broadened methine proton. Two primary amide 
protons were observed in DMSO-^6 which showed NOESY 
correlations with the C5 methylene protons, suggesting that a 
primary amide was attached to C5. The remaining portion 
(C1-C3 and C7) consisted of four nonprotonated carbons, gen­
erating broad signals at 8 195.0, 176.1, 174.8, and 102.0, one 
nitrogen and three oxygens. This constellation was reminiscent 
of a tetramic acid moiety, in which C4 is incorporated into the 
five-membered ring. The 13C chemical shifts agreed well with 
those reported for the relevant portion of streptolydigin.10 The 
above-mentioned structural units were connected, on the basis of 
HMBC spectral data (Table I). Structure 1 was fully consistent 
with the FAB-MS/MS data.11 

(9) Judging from the coupling constants, H2', H3' , and H4' were all axial, 
so that this unit must be xylopyranose. In the NOESY spectrum, a strong 
correlation was observed between H5'a and a broad signal at 6 4.52 ( H l ' and 
H2'). H5'a and H2' project axially in opposite directions from the tetra-
hydropyran ring; therefore, this cross peak was assignable to the NOE between 
H5 ' aand H l ' . 

(10) Lee V. J.; Rinehart, K. L., Jr. J. Antibiot. 1980, 33, 408-415. 
(11) The pseudomolecular ion peak at m/z 817 gave rise to ions at m/z 

685, 555, and 423, which were generated by the cleavage of the three glyco­
side bonds. Though the NMR data with broad 1H and 13C signals indicate 
that aurantoside A exists as a mixture of four possible tautomers (2,3 enol 
or 2,7 enol with cis or trans 2,7 bond), X-ray study of a tetramic acid (Nolte, 
M. J.; Steyn, P. S.; Wcssels, P. L. / . Chem. Soc, Perkin Trans. I 1980, 
1057-1065) suggests that the tautomer depicted in formula 1 is the predom­
inant one. 
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Table I. NMR Data for Aurantosides A and B (MeOH-̂ 4) 
aurantoside A (1) 

1 
2 
3 
4 
5a 
5b 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
Y 
2' 
y 
4' 
5'a 
5'b 
1" 
2" 
3" 
4" 
5"a 
5"b 
1'" 
1J/// 

•>/// 
A,„ 
5"' 
OMe 

13C mult 

174.8 s 
102.0 s 
195.0 s 
65.5 d 
38.5 t 

174.3 s 
176.1 s 
122.1 d 
146.4 d 
133.4 d 
145.2 d 
135.8 d 
140.1 d 
137.6 d 
132.0 d 
131.5 d 
129.8 s 
127.8 d 
137.4 s 
23.6 q 
86.5 d 
81.5 d 
79.2 d 
70.4 d 
69.4 t 

103.8 d 
71.5 d 
70.7 d 
75.9 d 
61.4 t 

98.7 d 
87.2 d 
79.7 d 
79.5 d 
20.9 q 
58.3 q 

1H mult 

4.33 br 
2.67 dd 
2.79 dd 

7.21 brd 
7.59 dd 
6.59 dd 
6.87 dd 
6.56 dd 
6.68 dd 
6.59 dd 
6.76 dd 
6.44 d 

6.32 s 

2.38 d 
4.52 br 
4.52 br 
3.48 dd 
3.63 ddd 
3.22 dd 
3.88 dd 
5.04 d 
3.79 dd 
3.77 dd 
3.90 ddd 
3.57 dd 
3.71 dd 
5.06 d 
3.65 dd 
3.88 dd 
3.74 dq 
1.31 d 
3.35 s 

J, Hz 

7.0, 16.0 
4.5, 16.0 

15.1 
10.9, 15.1 
10.9, 14.6 
11.2, 14.6 
11.2, 14.5 
11.1, 14.5 
11.1, 14.6 
10.7, 14.6 
10.7 

1.1 

9.0, 9.0 
5.4, 9.0, 10.5 
10.5, 11.3 
5.4, 11.3 
2.8 
2.8, 9.4 
2.9, 9.4 
1.4,2.9, 3.9 
3.9, 12.6 
1.4, 12.6 
4.4 
4.4, 7.9 
6.6, 7.9 
6.6, 6.4 
6.4 

The absolute stereochemistry of arabinose and xylose were 
determined to be D by GC analysis of the hydrolysis product on 
a Chirasil VaI III column.12 Acid hydrolysis of 1, followed by 
p-bromobenzoylation, yielded the l,3-bis-0-(p-bromobenzyl) 
derivative of the 5-deoxypentose (3).13 1H NMR coupling 
constants and NOE data indicated that this sugar unit was 5-
deoxy-2-O-methylarabinofuranose.14 NaI04/KMn04 oxidation 
of 1, followed by acid hydrolysis, provided L-Asp as identified by 
HPLC after derivatization with Marfey's reagent,15 thereby re­
vealing that aurantoside A had AS stereochemistry. 

NMR spectra of aurantoside B, which is more polar than 1, 
were almost superimposable on those of aurantoside A, except 
for the absence of a methoxy signal. Interpretation of the NMR 
and FAB mass data indicated that 2 was the 2"'-des-0-methyl 
derivative of aurantoside A.16 Acidic methanolysis, followed by 
p-bromobenzoylation and HPLC separation, afforded 1-0-
methyl-2,3-bis-0-(p-bromobenzoyl)-5-deoxyarabinose (4).'7 The 

(12) Konig, W. A.; Benecke, I.; Bretting, H. Angew. Chem., Int. Ed. Eng. 
1981, 20, 693-694. 

(13) 1H NMR data for 3 (CDCl3): S 6.48 (s, Hl), 5.08 (d, J = 3.3 Hz, 
H3), 4.51 (dq, J = 3.3, 6.6 Hz, H4), 4.10 (s, H2), 3.55 (3 H, s, 2-OMe), 1.49 
(3 H, d, J = 6.6 Hz, H35). Aromatic protons are omitted. 

(14) Stevens, J. D.; Fetcher, H. G., Jr. J. Org. Chem. 1968, 33, 1799-1805. 
Small coupling constants between Hl and H2 and between H2 and H3 in 3 
indicated that both H1/H2 and H2/H3 are trans. An NOE observed for Hl 
on irradiation of Me-5 showed that they were on the same face of the mole­
cule. 1H-1H coupling constants of the 5-deoxy-2-0-methylarabinose residue 
in aurantoside A revealed that Hl" ' and H2"' are cis. 

(15) Marfey, P. Carlsberg Res. Commun. 1984, 49, 591-596. 
(16) 2D NMR data (COSY, ROESY, HMQC, and HMBC) supported 

the structure 2 for aurantoside B. C4 stereochemistry and the configuration 
of Ara and XyI residues were established as in the case of 1. 
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aurantoside B (2) 

MBC (C no.) 

4, 6 
3 ,4 ,6 

10, 11 
8, 9, 12 
12, 13 
10, 11, 13 
12, 15 
12, 16 
14, 16, 17 
14, 15, 18 

16, 17, 19 

18, 19 

2', 4' 
3' 
3', 4' 
1', 3', 4' 
2', 3", 5" 
3" 
2" 
2", 3", 1'" 
1", 3", 4" 
1", 4" 
4" 3'" 4'" 
4'", OMe 
2'", 4 '" 
1'", 3 '" 
yn A1IIt 

2"' 

13C mult 

174.9 s 
102.0 s 
195.1 s 
65.3 d 
38.1 t 

174.3 s 
176.2 s 
122.Od 
146.5 d 
133.4 d 
145.2 d 
135.7 d 
140.1 d 
137.6 d 
131.9 d 
131.4 d 
129.7 s 
127.8 d 
137.4 s 
23.5 q 
86.Od 
81.1 d 
79.2 d 
70.5 d 
69.2 t 

103.9 d 
71.7 d 
70.7 d 
76.5 d 
61.9 t 

100.7 d 
78.9 d 
79.5 d 
81.1 d 
20.7 q 

1H mult 

4.32 br 
2.67 dd 
2.79 dd 

7.22 br d 
7.61 dd 
6.61 dd 
6.88 dd 
6.57 dd 
6.69 dd 
6.61 dd 
6.77 dd 
6.45 d 

6.33 s 

2.39 br s 
4.52 br 
4.52 br 
3.48 t 
3.62 m 
3.21 t 
3.88 m 
5.04 d 
3.79 dd 
3.77 m 
3.92 m 
3.61 m 
3.75 m 
4.92 d 
3.88 m 
3.76 m 
3.78 m 
1.31 d 

J 1 Hz 

7.2, 16.0 
4.1, 16.0 

15.4 
11.4, 15.4 
11.4, 14.5 
11.3, 14.5 
11.3, 14.6 
11.2, 14.6 
11.2, 14.5 
10.7, 14.5 
10.7 

9.0 

11.0 

2.5 
2.5, 9.4 

4.7 

6.0 

CD spectrum of 4 exhibited a negative exciton split, indicating 
that this sugar unit was in the D form.18 Thus, it is most likely 
that 5-deoxy-2-0-methylarabinose in 1 is in the D form. 

Aurantosides are the first tetramic acid glycosides isolated from 
a marine organism. While the tetramic acid moiety is reminiscent 
of some terrestrial microbial metabolites," the acetamide and 
14-carbon side chains as well as the /V-trisaccharide-derivatized 
tetramic acid are unique structural features of the aurantosides.21 
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(17) 1H NMR data for 4 (CDCl3): S 5.40 (s, H2), 5.14 (d, J = 5.0 Hz, 
H3), 5.05 (s, Hl), 4.34 (dq, J = 5.0, 6.5 Hz, H4), 3.44 (3 H, s, 1-OMe), 1.51 
(3 H, d, J = 6.5 Hz, H35). Aromatic protons are omitted. CD spectrum 
(MeCN): 251 (Ae = -27.2), 240 (0), 234 (+6.9) nm. 

(18) Nakanishi, K.; Kuroyanagi, M.; Nambu, H.; OHz, E. M.; Takeda, R.; 
Verdine, G. L.; Zask, A. Pure Appl. Chem. 1984, 56, 1031-1048. 

(19) Aurantosides have a conjugated polyene structure similar to the 
structures of erythroskyrine, lipomycins, and oleficin,20 none of which are 
chlorinated. 

(20) (a) Shoji, J.; Shibata, S.; Sankawa, U.; Taguchi, H.; Shibanuma, Y. 
Chem. Pharm. Bull. 1965, 13, 1240-1246. (b) Schabacher, K.; Zeeck, A. 
Tetrahedron Lett. 1973, 2691-2694. (c) Gyimesi, J.; Mehasfalvi-Vajna, Zs.; 
Horvath, Gy. J. Antibiot. 1978, 31, 626-627. 

(21) After we submitted this paper, a tetramic acid from a marine sponge 
was reported. Gunasekara, S. P.; Gunasekera, M.; McCarthy, P. / . Org. 
Chem. 1991, 56, 4830-4833. 
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We first reported the thermal interconversion of [a-13C]-
naphthalene (la) and [/3-13C]naphthalene (1(8) in 19772 and have 
subsequently observed the 1,2-scrambling of carbon atoms at high 
temperatures in a variety of other aromatic hydrocarbons,3"8 as 
well as in benzene-13C2.

9 Considerable evidence suggests that 
the mechanism of these "automerization" reactions and related 
thermal rearrangements of benzenoid hydrocarbons involves re­
versible contraction of a benzene nucleus to a five-membered-ring 
intermediate.7,1011 Herein we present new evidence that deposes 
the previously proposed carbene 2 as a candidate for that inter­
mediate in favor of benzofulvene (3); Scheme I depicts plausible 
pathways to 3 via ring contractions of carbenes 4 and 5. 

R. F. C. Brown et al. have reported that flash vacuum pyrolysis 
(FVP) of benzofulvene gives naphthalene as the exclusive prod­
uct.12 We have now repeated this reaction using isotopically 
labeled benzofulvene, enriched to 99% 13C in the methylene group 
(3).13 At 900 0C/10~3 Torr, labeled benzofulvene 3 yields [a-
13C]naphthalene (la) and [/3- 13C]naphthalene (1/3) in a ratio of 
21:79 ± 3.14'15 Control experiments (repyrolysis of the labeled 

f Visiting scholar from Sharif University of Technology, Tehran, Iran. 
'Undergraduate summer research student from Northwestern University. 
(1) Thermal Rearrangements of Aromatic Compounds. 15. For precedng 

papers in this series, see: Scott, L. T.; Hashemi, M. M.; Meyer, D. T.; Warren, 
H. B. J. Am. Chem. Soc. 1991, 113, 7082. 

(2) Scott, L. T.; Agopian, G. K. J. Am. Chem. Soc. 1977, 99, 4506. 
(3) Scott, L. T.; Highsmith, J. R. Tetrahedron UtI. 1980, 21, 4703. 
(4) Scott, L. T.; Kirms, M. A. J. Am. Chem. Soc. 1981, 103, 5875. 
(5) Scott, L. T. Ace. Chem. Res. 1982, 15, 52. 
(6) Scott, L. T.; Kirms, M. A.; Berg, A.; Hansen, P. E. Tetrahedron Lett. 

1982, 23, 1859. 
(7) Scott, L. T.; Tsang, T.-H.; Levy, L. A. Tetrahedron Lett. 1984, 25, 

1661. 
(8) Scott, L. T. Chem. Aust. 1987, 54, 298. 
(9) Scott, L. T.; Roelofs, N. H.; Tsang, T.-H. J. Am. Chem. Soc. 1987, 

109, 5456. 
(10) Scott, L. T.; Roelofs, N. H. J. Am. Chem. Soc. 1987, 109, 5461. 
(11) Scott, L. T.; Roelofs, N. H. Tetrahedron Lett. 1988, 29, 6857. 
(12) Brown, R. F. C; Gream, G. E.; Peters, D. E.; Solly, R. K. Aust. J. 

Chem. 1968, 21, 2223-2236. 
(13) Benzofulvene enriched to 99% 13C in the methylene group (3) was 

synthesized by (a) quenching the lithium salt of indene in ether with 13CO2 
generated from 99%-13C-enriched BaCO3, (b) esterification of the resulting 
indenecarboxylic acid (SOCl2/CHCI3, then EtOH/THF), (c) reduction of the 
ester with LiAlH4/AlCl3/Et20, and (d) dehydration of the indenylmethanol 
in benzene at 100C with methanesulfonyl chloride (1.0 equiv) and triethyl-
amine (9 equiv). The indene derivatives in this synthetic sequence are known 
compounds in their unlabeled form: see ref 12 and citations therein. 

(14) Flash vacuum pyrolyses were conducted in a commercially available 
Trahanovsky pyrolysis apparatus purchased from Kontes, Inc., Vineland, NJ 
08360. Polymerization of 3 in the sample chamber was suppressed by ma­
trix-isolating the material in frozen benzene at 0 0C; a portion of the benzene 
dimerizes to biphenyl in the pyrolysis tube. The pyrolysate was doubly sub­
limed prior to quantitative 13C NMR analysis; the appropriate correction was 
made for unequal a and 0 13C signal intensities in the NMR spectrum of 
unenriched naphthalene. 

naphthalene mixture) confirm that la and 1/3 do not interconvert 
(<3%) under these conditions.16 

We believe that the disparate product distribution in this ex­
periment argues strongly against carbene 2 as an intermediate 
on the pathway from benzofulvene to naphthalene. Our reasoning 
is as follows: At 900 0C, a kinetically controlled product ratio 
of 21:79 requires a difference in free energy of activation (AAG*) 
of ca. 3.1 kcal/mol between two competing pathways.15 If carbene 
2 were the intermediate in the aromatization of benzofulvene 
(Scheme I), then these two competing pathways would be the aryl 
shift (2 — la) and the vinyl shift (2 — 1/3)." Such rear­
rangements of carbenes, however, are extremely exothermic re­
actions with very low energy barriers (Figure IA)18 and should 
be characterized by quite early (carbene-like) transition states." 
Given two equally exothermic pathways (2 —• la vs 1/3),20 both 
with very low energy barriers, it seems highly unlikely that they 
could differ in AG' by as much as 3.1 kcal/mol. Thus, carbene 
2 appears improbable as an intermediate on the pathway from 
benzofulvene to naphthalene. 

Brown et al. originally proposed an alternate pathway for the 
aromatization of benzofulvene via carbene 4 (Scheme I).12 This 
mechanism would certainly account for the minor product (la) 
we obtain from labeled benzofulvene 3, and the major product 
(1/3) could presumably arise by an analogous pathway via carbene 
5. It would be reasonable to assume that the initial ring expan­
sions, rather than the subsequent hydrogen shifts, represent the 
rate-limiting steps on these two competing pathways. 

This proposal has the virtue that the product-determining 
branch point in the mechanism involves highly endothermic re­
actions with very high energy barriers (Figure IB) that should 
be characterized by quite late (carbene-like) transition states.19 

These two competing pathways, which lead to different carbenes, 
could more easily differ in AG* by 3.1 kcal/mol. Indeed, Dewar 
and Merz place carbene 5 lower in energy than carbene 4 by 3.4 
kcal/mol on the basis of MNDO calculations.21 This calculated 
difference in energy not only qualitatively predicts the preferential 
formation of 1/3 from 3 via carbene 5 but even agrees quantitatively 
with the product ratio we observe. 

If benzofulvene isomerizes to naphthalene via the six-mem-
bered-ring carbenes 4 and 5, as we now propose, rather than via 
the indenyl carbene 2, then a strong case can be made that the 
automerization of naphthalene is also more likely to proceed via 
4, 5, and benzofulvene rather than via simple ring contraction to 
2. A crucial element of this argument is the postulate that the 
transition state between 2 and 3 lie lower in energy than the 
transition states separating 2 from either la or 1(3. This seems 
reasonable, since 1,2-hydrogen shifts in carbenes almost always 
occur more readily than 1,2-carbon shifts.18 Furthermore, Kjell 
and Sheridan have actually observed that carbene 2, when gen­
erated in a frozen matrix at low temperatures, rearranges ex­
clusively to benzofulvene and gives no naphthalene.22 Conse-

(15) The 900 0C temperature we report here is the thermocouple reading 
inside the oven at the midpoint of, but external to, the pyrolysis tube. 

(16) The automerization of naphthalene has a half-life of approximately 
2 s at 1035 0C in a nitrogen flow system.2 

(17) Cyclization of carbene 2 to naphthvalene would not account for for­
mation of la. 

(18) Tomioka, H.; Ueda, H.; Kondo, S.; Izawa, Y. J. Am. Chem. Soc. 
1980,102, 7817-7818. Stevens, I. D. R.; Liu, M. T. H.; Soundararajan, N.; 
Paike, N. Tetrahedron Lett. 1989, 30, 481-484. Moss, R. A.; Ho, G.-J. 
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